When developing deep learning models, we usually decide what task we want to solve then search for a model that generalizes well on the task. An intriguing question would be: what if, instead of fixing the task and searching in the model space, we fix the model and search in the task space? Can we find tasks that the model generalizes on? How do they look, or do they indicate anything? These are the questions we address in this paper. We propose a task discovery framework that automatically finds examples of such tasks via optimizing a generalization-based quantity called agreement score. We demonstrate that one set of images can give rise to many tasks on which neural networks generalize well. These tasks are a reflection of the inductive biases of the learning framework and the statistical patterns present in the data, thus they can make a useful tool for analysing the neural networks and their biases. As an example, we show that the discovered tasks can be used to automatically create adversarial train-test splits which make a model fail at test time, without changing the pixels or labels, but by only selecting how the datapoints should be split between the train and test sets. We end with a discussion on human-interpretability of the discovered tasks.
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
This work proposes a framework developed to generalize Critical Heat Flux (CHF) detection classification models using an Unsupervised Image-to-Image (UI2I) translation model. The framework enables a typical classification model that was trained and tested on boiling images from domain A to predict boiling images coming from domain B that was never seen by the classification model. This is done by using the UI2I model to transform the domain B images to look like domain A images that the classification model is familiar with. Although CNN was used as the classification model and Fixed-Point GAN (FP-GAN) was used as the UI2I model, the framework is model agnostic. Meaning, that the framework can generalize any image classification model type, making it applicable to a variety of similar applications and not limited to the boiling crisis detection problem. It also means that the more the UI2I models advance, the better the performance of the framework.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Yes. In this paper, we investigate strong lottery tickets in generative models, the subnetworks that achieve good generative performance without any weight update. Neural network pruning is considered the main cornerstone of model compression for reducing the costs of computation and memory. Unfortunately, pruning a generative model has not been extensively explored, and all existing pruning algorithms suffer from excessive weight-training costs, performance degradation, limited generalizability, or complicated training. To address these problems, we propose to find a strong lottery ticket via moment-matching scores. Our experimental results show that the discovered subnetwork can perform similarly or better than the trained dense model even when only 10% of the weights remain. To the best of our knowledge, we are the first to show the existence of strong lottery tickets in generative models and provide an algorithm to find it stably. Our code and supplementary materials are publicly available.
translated by 谷歌翻译
Motivated by mitigating potentially harmful impacts of technologies, the AI community has formulated and accepted mathematical definitions for certain pillars of accountability: e.g. privacy, fairness, and model transparency. Yet, we argue this is fundamentally misguided because these definitions are imperfect, siloed constructions of the human values they hope to proxy, while giving the guise that those values are sufficiently embedded in our technologies. Under popularized methods, tensions arise when practitioners attempt to achieve each pillar of fairness, privacy, and transparency in isolation or simultaneously. In this position paper, we push for redirection. We argue that the AI community needs to consider all the consequences of choosing certain formulations of these pillars -- not just the technical incompatibilities, but also the effects within the context of deployment. We point towards sociotechnical research for frameworks for the latter, but push for broader efforts into implementing these in practice.
translated by 谷歌翻译
尽管公平感知的机器学习算法一直在受到越来越多的关注,但重点一直放在集中式的机器学习上,而分散的方法却没有被解散。联合学习是机器学习的一种分散形式,客户使用服务器训练本地模型,以汇总它们以获得共享的全局模型。客户之间的数据异质性是联邦学习的共同特征,这可能会诱导或加剧对由种族或性别等敏感属性定义的无私人群体的歧视。在这项工作中,我们提出了公平命运:一种新颖的公平联合学习算法,旨在实现群体公平,同时通过公平意识的聚合方法维持高效用,该方法通过考虑客户的公平性来计算全球模型。为此,通过使用动量术语来估算公平模型更新来计算全局模型更新,该术语有助于克服嘈杂的非直接梯度的振荡。据我们所知,这是机器学习中的第一种方法,旨在使用公平的动力估算来实现公平性。四个现实世界数据集的实验结果表明,在不同级别的数据异质性下,公平命运显着优于最先进的联邦学习算法。
translated by 谷歌翻译
本文分析了三种具有不同韵律系统的语言的违反语音数据集:英语,韩语和泰米尔语。我们检查39个声学测量值,反映了三个语音维度,包括语音质量,发音和韵律。作为多语言分析,通过可理解水平对声学测量的平均值进行检查。此外,执行自动清晰度分类以审查语言设置的最佳功能。分析表明发音特征,例如正确的辅音百分比,正确的元音百分比以及正确的音素比例为语言无关的测量。但是,语音质量和韵律特征通常通过语言呈现不同的方面。实验结果还表明,不同的语音维度对不同的语言起着更大的作用:英语的韵律,韩语的发音,韵律和泰米尔语的发音。本文有助于言语病理学,因为它在英语,韩语和泰米尔语构想中的可理解分类中区分了与语言无关和语言依赖性测量。
translated by 谷歌翻译
本文提出了一种针对英语,韩语和泰米尔语的跨语性分类方法,该方法采用了与语言无关的功能和语言唯一功能。首先,我们从语音质量,发音和韵律等各种语音维度中提取39个特征。其次,应用功能选择来确定每种语言的最佳功能集。通过比较三种语言的特征选择结果来区分一组共享功能和一组独特的功能。最后,使用两个功能集,进行自动严重性分类。值得注意的是,所提出的方法删除了语言的不同特征,以防止其他语言的唯一特征的负面影响。因此,由于其强度归因于缺失的数据,因此采用了极端梯度提升(XGBoost)算法进行分类。为了验证我们提出的方法的有效性,进行了两个基线实验:使用单语言特征集的交点集(交叉路口)和使用单语语言特征集(UNIOM)的联合集合进行实验。根据实验结果,我们的方法以67.14%的F1得分获得更好的性能,而交叉路口实验为64.52%,联合实验为66.74%。此外,所提出的方法比所有三种语言的单语言分类都能获得更好的性能,分别达到17.67%,2.28%,7.79%的相对百分比增加了英语,韩语和泰米尔语。结果规定,必须单独考虑通常共享特征和特定于语言的特征,以进行跨语音质心严重性分类。
translated by 谷歌翻译
惯性辅助系统需要连续的运动激发,以表征测量偏差,这些偏差将使本地化框架需要准确的集成。本文建议使用信息性的路径计划来找到最佳的轨迹,以最大程度地减少IMU偏见的不确定性和一种自适应痕迹方法,以指导规划师朝着有助于收敛的轨迹迈进。关键贡献是一种基于高斯工艺(GP)的新型回归方法,以从RRT*计划算法的变体之间实现连续性和可区分性。我们采用应用于GP内核函数的线性操作员不仅推断连续位置轨迹,还推断速度和加速度。线性函数的使用实现了IMU测量给出的速度和加速度约束,以施加在位置GP模型上。模拟和现实世界实验的结果表明,IMU偏差收敛的计划有助于最大程度地减少状态估计框架中的本地化错误。
translated by 谷歌翻译